Synthesis of tetrahydroquinolines, hexahydrobenzoindolizines and an aryl phosphonate linker for the generation of catalytic antibodies

C oncepción G onzález-B ello, C hris A bell* and Finian J . Leeper*
C ambridge C entre for M olecular Recognition, U niversity Chemical Laboratory, L ensfield R oad, C ambridge CB2 1EW, UK

Abstract

Syntheses of 6-methoxy-1-methyl-1,2,3,4-tetrahydroquinoline-3-methanol 10 and 1,2,3,5,6,10b-hexahydrobenzo[g]indolizine-6-methanol 34 are described. The aryl phosphonic acid 14, which can be used as a linker to a protein, is synthesised and coupled to the above alcohols. These haptens, when linked to a protein, are intended to generate antibodies able to catalyse cationic cyclisation reactions.

Cationic cyclisations are a fundamental type of reaction implicated in the biosynthesis of the vast number of isoprenoid natural products. ${ }^{1}$ This class of reaction is catalysed by terpene cyclase enzymes, which operate on a very limited number of substrates. N evertheless, they are the key steps in the formation of thousands of terpene natural products, ranging from simple monoterpenes, like camphor, to more complex biologically important compounds like Taxol ${ }^{\text {TM }}$ and steroids like cholesterol. The feature of the majority of these cyclisation reactions is the ionisation of an allylic pyrophosphate to generate a transient allylic cation, which is then attacked by an electron-rich double bond. This generates a further cationic centre, which can be attacked by other double bonds or can trigger rearrangement reactions involving alkyl or hydride migrations. The cascade of reactions terminates when the reactive cationic species is quenched by loss of a proton or nucleophilic attack by water or pyrophosphate.

C atalysis of a cationic cyclisation requires control of the initial generation and stabilisation of the carbocation. A ntibodies could, in principle, be excellent catalysts for the ionisation and control of the cyclisation process, in that they have been shown to be capable of catalysing complex reactions in which it was necessary to simultaneously stabilise point charges, overcome entropic barriers and provide a chiral binding pocket for stereoselectivity. ${ }^{2}$ In essence, the problem reduces to that of generation of the carbocation in an environment that fosters and controls the cyclisation reaction.
We are interested in generating antibodies designed to catalyse cationic cyclisations and are encouraged by recent reports of catalytic antibodies exhibiting this reactivity. ${ }^{3}$ In principle, such antibodies could be used to assemble novel carbon skeletons.
Our strategy is to use a transition state analogue (TSA) which mimics the initial cation formed and the leaving group as it departs. The developing positive and negative charges are mimicked by a positively charged nitrogen atom and a phosphonate respectively. This strategy has evolved from a previous study in our laboratory on a more complex cyclisation in which the cation mimicked was that formed after two cyclisation reactions. ${ }^{4}$ In this paper we describe the synthesis of substrates and TSA s for two potential cationic cyclisations using this principle.

Results and discussion

Synthesis of the first transition state analogue

The first cationic cyclisation which we hope to catalyse using antibodies is shown in Scheme 1. In this reaction the leaving group is an arenesulfonate ion and the cation $\mathbf{2}$ formed upon cyclisation is benzylic and additionally stabilised by an electron-

Scheme 1 (Tol = p-tolyl)
donating p-methoxy group. Loss of a proton from cation 2 would give alkene 3 as the product. The TSA chosen for this reaction, $\mathbf{4}$, has a protonated amine at the position of the positive charge in the intermediate benzylic cation $\mathbf{2}$. The arenesulfonate leaving group is mimicked by an arylphosphonateion, which also provides the point of attachment of the carboxylic acid side-chain to be used to link the TSA to a protein. This point of attachment will ensure that the sulfonate leaving group is able to leave the antibody combining site when ionisation of the substrate 1 occurs. The phosphonate group is separated from the bicyclic skeleton by an extra methylene group so as to mimic the lengthening of the carbon to the oxygen bond which occurs during the reaction.
The strategy for the synthesis of the tetrahydroisoquinoline moiety 10 of TSA $\mathbf{4}$ involved dihydroisoquinolone $\mathbf{8}$ as a key intermediate, which was metallated and reacted with an electrophile to introduce the required side-chain (Scheme 2). The synthesis began with 6 -methoxyquinoline 5 , which was methylated with methyl iodide in acetone ${ }^{5}$ The resultant quinolinium salt 6 was then oxidised with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{6}$ to give the α, β-unsaturated lactam 7 which was subsequently hydrogenated at 40 atmospheres pressure over 10% palladium-on-carbon to give the dihydroquinolone $\mathbf{8}$ in good yield over the three steps.

Lithiation of the lactam 8 with lithium diisopropylamide (L DA) in the presence of ethyl cyanoformate, afforded the ester 9 in 70\% yield (97\% based on unrecovered starting material)

Scheme 2 Reagents and conditions: i, Mel, acetone, reflux; ii, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; iii, H_{2} (40 atm), Pd/C, EtOH, 48 h ; iv, LDA, $\mathrm{CNCO}_{2} \mathrm{Et}, \mathrm{THF},-78^{\circ} \mathrm{C}$; v, LiAlH $4, \mathrm{THF}$, reflux
and reduction with LiAlH_{4} gave the desired amino alcohol $\mathbf{1 0}$ in 75% yield.

The phosphonic acid 14, which was to be used as the linker to the protein, was synthesised starting from bromocinnamic acid 11 (Scheme 3). A fter protection of the acid as its isopropyl ester

Scheme 3 Reagents and conditions: i, $\mathrm{Pr} \mathrm{OH}, \mathrm{H}_{2} \mathrm{SO}_{4}$, reflux; ii, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{HPO}(\mathrm{OM} \mathrm{e})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhM} \mathrm{e}, 90^{\circ} \mathrm{C}$; iii, $\mathrm{TM} \mathrm{SCl}, \mathrm{NaI}, \mathrm{CH}_{3} \mathrm{CN}$ iv, 10, DCC, DM AP, TH F, reflux; v, KOH , M eOH
palladium-catalysed coupling of the bromide $\mathbf{1 2}$ with dimethyl phosphite ${ }^{7}$ gave the phosphonate ester 13 in good yield. Cleavage of the methyl esters using trimethylsilyl iodide ${ }^{8}$ then gave the phosphonic acid 14

Finally the amino alcohol $\mathbf{1 0}$ was coupled to the phosphonic acid 14 using dicyclohexylcarbodiimide and 4-dimethylaminopyridine ${ }^{9}$ to afford the ester 15 in 67% yield. H ydrolysis of the ester under alkaline conditions gave the hapten 4 in 95% yield.

Synthesis of the first substrate

The substrate 22, required for the first proposed antibodycatalysed reaction, was synthesised starting from methyl 3-methoxyphenylacetate 16 (Scheme 4). Friedel-Crafts's acetylation ${ }^{10}$ of 16 gave a single ketone 18 . The position of the

16

ii, $97 \% \longleftrightarrow \begin{aligned} & 18 \mathrm{X}=\mathrm{O} \\ & \\ & 19 \mathrm{X}=\mathrm{CH}_{2}\end{aligned}$

$\mathrm{iv}, 84 \% \longleftrightarrow \begin{gathered}21 \mathrm{R}=\mathrm{H} \\ 22 \mathrm{R}=\mathrm{T}\end{gathered}$
Scheme 4 Reagents and conditions: i, $\mathrm{AcCl}, \mathrm{AICl}_{3} ;$ ii, Tebbe reagent, THF, $0^{\circ} \mathrm{C}$; iii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; iv, TsCl , pyridine, $0^{\circ} \mathrm{C}$; v, NaBH_{4}, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ (Ts = tosyl)
acetylation was confirmed by reduction with sodium borohydride to give the lactone $\mathbf{2 0}$. This lactone could not be formed from the alternative acetylation product 17.
A Wittig reaction of the ketone 18 with methylenetriphenylphosphorane did not give any of the desired product, perhaps because the ketone is rather deactivated. H owever, methylenation using the Tebbe reagent ${ }^{11}$ gave the olefin 19 in 97% yield. Finally, reduction of the ester group with LiAlH_{4} gave the alcohol 21, which was transformed into the toluene p-sulfonate 22 in 84% yield. ${ }^{12}$

Synthesis of the second transition state analogue

One risk of the foregoing strategy for the generation of antibodies to catalyse a cationic cyclisation is that an anionic centre on the antibody, induced by the cationic site in the TSA, may trap the cationic intermediate formed during the desired cyclisation reaction. This is an inherent problem in cationic cyclisations. The second reaction that we aimed to catalyse, shown in Scheme 5, sought to overcome this problem by having an alco-

Scheme 5
hol group in the substrate to act as an intramolecular nucleophile. Trapping of the developing cation by this -OH group would lead to the cyclic ether $\mathbf{2 4}$ as the product. The leaving group in the substrate $\mathbf{2 3}$ is in a benzylic position and previous work has shown that benzylic sulfonates are too unstable under
aqueous conditions. ${ }^{13}$ Success of the cyclisation is more likely if we use a sulfinate which has more suitable reactivity. The 5-dimethylaminonaphthalene-1-sulfinate (dansinate) leaving group (as in 23) is particularly suitable because of the large change in fluorescence between an ester (such as 23) and the sulfinate anion. ${ }^{13}$

TheTSA chosen for this reaction was the aminophosphonate 25. Our synthetic strategy to $\mathbf{2 5}$ (Scheme 6) aims to make the

Scheme 6 Reagents and conditions: $\mathrm{i}, \mathrm{LiAlH}_{4}, \mathrm{Et} \mathrm{O}_{2}, 0^{\circ} \mathrm{C}$; $\mathrm{ii}, \mathrm{PhCHO}$, $\mathrm{ZnCl}_{2}, \mathrm{CHCl}_{3}$; iii, $\mathrm{Bu}_{2}^{1} \mathrm{AlH}$, PhM e; iv, succinimide, DEAD, Ph 3 P, THF; v, $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$; vi, $\mathrm{HCO}_{2} \mathrm{H}$; vii, H_{2} (1 atm), Pd/C, EtOH; diastereoisomers separated; viii, $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux; ix, $\mathbf{1 4}, \mathrm{SOCl}_{2}$, DMF; $\mathrm{X}, \mathrm{KOH}, \mathrm{MeOH}$
tricyclic skeleton by an acid-catalysed cationic cyclisation of ethoxylactam 31 (via the corresponding acyliminium ion ${ }^{14}$). The synthesis starts with the diol 27 , which was made by reduction of the diester 26 with LiAlH_{4} in diethyl ether. ${ }^{15}$ The diol 27 was monoprotected selectively ${ }^{16}$ by treatment with benzaldehyde in the presence of $\mathrm{ZnCl}_{2}{ }^{17}$ to give the acetal 28, and then cleavage with DIBAL in toluene to give the monobenzyl ether 29 in high yield. M itsunobu reaction ${ }^{18}$ of the alcohol group of 29 yielded the succinimide 30 in 89% yield. The ethoxylactam 31 was prepared in high yield by reduction of the succinimide with NaBH_{4} in the presence of ethanol and hydrochloric acid. ${ }^{14}$
The acid-catalysed cyclisation of the ethoxylactam 31 proceeded well in formic acid at room temperature, giving a mixture of diastereoisomers in a ratio of 8.4 to 1 . The relative stereochemistry of the major diastereoisomer was elucidated as 32 by ${ }^{1} \mathrm{H} N M R$ experiments (COSY and NOE). This major product is presumably formed via the chair-shaped transition state 36 in which the $\mathrm{CH}_{2} \mathrm{OBn}$ group is pseudoaxial. The chair transition state 37 leading to the minor diastereoisomer is probably higher in energy because of an $\mathrm{A}_{1,3}$ interaction between the $\mathrm{CH}_{2} \mathrm{OBn}$ group and the benzene ring.

The mixture of diastereoisomers 32 was deprotected by hydrogenolysis to give the free alcohols 33 in an unchanged ratio of 8.4:1. The two diastereoisomers were separated at this stage and the relative stereochemistry of the major one was

Fig. 1 X-Ray crystal structure of lactam 33

Possible transition states during acid-catalysed cyclisation of $\mathbf{3 1}$
unequivocally confirmed as 33 by X-ray crystallography (Fig. 1). ${ }^{19}$ The molecules of 33 pair up in the crystal with the oxygen atoms close enough to indicate an intermolecular hydrogen bond between the -OH of one molecule and the $\mathrm{C}=0$ of the other. Finally, the major diastereoisomer of Iactam 33 was reduced with LiAlH_{4} in THF to give the amine 34 in 93% yield.
For the coupling of phosphonic acid 14 to the amino alcohol 34, the previous conditions gave only a low yield of coupled product (22%). Several different conditions were tried but the best yield obtained was 35%, using thionyl chloride to activate the phosphonic acid. ${ }^{20}$ Finally the isopropyl ester of the coupled product 35 was hydrolysed under alkaline conditions to give the hapten $\mathbf{2 5}$ in 95% yield.

Synthesis of the second substrate

The synthesis of the second substrate requires a monoprotected diol such as 40 (Scheme 7). This was readily made by trans-

i, $99 \% \quad \square 38 \mathrm{R}^{1}=\mathrm{SiBu}^{t} \mathrm{Me}_{2}, \mathrm{R}^{2}=\mathrm{H}$
$\mathrm{i}, 99 \% \quad \longrightarrow 39 \mathrm{R}^{1}=\mathrm{SiBu}^{t} \mathrm{Me}_{2}, \mathrm{R}^{2}=\mathrm{SiBu}^{t} \mathrm{Ph}_{2}$
ii, $80 \% \quad \square 40 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{SiBu}^{t} \mathrm{Ph}_{2}$
Scheme 7 Reagents: i, Bu't ${ }^{\text {Ph }}{ }_{2} \mathrm{SiCI}$, imidazole, DM F;ii, PPTS, EtOH
position of the protecting group from the alternative monoprotected diol 38 (the synthesis of 38 has been described previously ${ }^{4}$). Transformation of alcohols such as 38 into their dansinate esters (e.g. 23) has also been described. ${ }^{13}$ It was not performed in the present work because sulfinate esters, being more labile than their parent alcohols, are best prepared shortly before they are to be used.

C onclusions

In this paper, efficient syntheses of two novel heterocyclic compounds, a tetrahydroquinoline-3-methanol $\mathbf{1 0}$ and a hexa-
hydrobenzoindolizine-6-methanol 34, have been described. In addition the synthesis of an arylphosphonic acid which can be used as a linker to a protein has been described. A ntibodies specific for the haptens $\mathbf{4}$ and $\mathbf{2 5}$ will be generated to test if they catalyse the desired cationic cyclisation reactions. In addition, the combination of positively and negatively charged groups that should be induced in the antibody combining site by these haptens may well lead to the catalysis of alternative reactions such as β-elimination reactions or intramolecular aldol condensations.

Experimental

General directions

General directions are as in ref. 4. IR Spectra were determined using a 1710 Fourier Transform spectrometer as NaCl plates or K Br discs; proton NMR spectra were recorded on either a Bruker AM 200, AM 400 or DPX 500 spectrometer, operating at 200,400 and 500 M Hz respectively, with tetramethylsilane (TM S) as internal standard; J values are given in Hz . Where indicated, the number of protons attached to each carbon in the ${ }^{13} \mathrm{C}$ NMR spectrum was determined using the APT (attached proton test) J -modulated spin-echo pulse sequence.

6-M ethoxy-1-methyl-2(1H)-quinolone 7

A stirred suspension of the quinolinium iodide $\mathbf{6}^{5}$ ($3.17 \mathrm{~g}, 10.5$ mmol) in water ($50 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(20.8 \mathrm{~g}, 63.1 \mathrm{mmol})$ in water ($63 \mathrm{~cm}^{3}$) was added dropwise over 1 h . Then a solution of $\mathrm{KOH}(7.07 \mathrm{~g}, 126.2$ mmol) in water ($10.5 \mathrm{~cm}^{3}$) was added dropwise over 30 min . Toluene was then added ($50 \mathrm{~cm}^{3}$) and the mixture was heated at $35^{\circ} \mathrm{C}$ for 15 min . The organic layer was separated and the aqueous layer was extracted with diethyl ether ($100 \mathrm{~cm}^{3}$) and dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with acetone-dichloromethane ($1: 4$), to yield the quinolone 7 ($1.86 \mathrm{~g}, 94 \%$) as needles, mp $72-73^{\circ} \mathrm{C}$ (F ound: C, 69.8; H, 5.8; $\mathrm{N}, 7.3 \% . \mathrm{M} \mathrm{H}^{+}, 190.0859 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{C}, 69.8 ; \mathrm{H}, 5.85$; $\mathrm{N}, 7.4 \% ; \mathrm{M} \mathrm{H}, 190.0868) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 350,272,233$ and 211; $v_{\text {max }} / \mathrm{cm}^{-1} 1646(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.4, 4-H), $7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9,8-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.8$ and 8.9 , 7-H), 7.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,5-\mathrm{H}$), 6.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.4,3-\mathrm{H}$), 4.03 (3 $\mathrm{H}, \mathrm{s}, \mathrm{MeO})$ and $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eN})$; $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 161.8$ (C), 154.6 (C), 138.3 (CH), 134.6 (C), 122.3 (CH), 121.3 (C), $119.0(\mathrm{CH}), 115.3(\mathrm{CH}), 110.5(\mathrm{CH}), 56.6(\mathrm{M} \mathrm{eO})$ and 29.4 (M eN); m/z (FAB + ve) $190\left(\mathrm{M} \mathrm{H}^{+}\right)$.

6-M ethoxy-1-methyl-3,4-dihydro-2(1H)-quinolone 8

A suspension of the lactam $7(1.35 \mathrm{~g}, 7.13 \mathrm{mmol})$ and 10% palladium-on-carbon (130 mg) in absolute ethanol $\left(28 \mathrm{~cm}^{3}\right)$ was shaken under 40 atmospheres pressure of hydrogen at room temperature for 48 h . The mixture was filtered through Celite and the residue was washed with ethanol. The filtrate and washings were evaporated under reduced pressure and the residue was purified by flash column chromatography, eluting with acetone-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (1:4), to yield dihydroquinolone 8 ($1.15 \mathrm{~g}, 85 \%$) as needles, $\mathrm{mp} 62-63^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 69.0; H, 6.9; N, 7.3\%; M H ${ }^{+}$, 192.1028. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 6.85 ; \mathrm{N}, 7.3 \% ; \mathrm{MH}, 192.1024$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 258$ and 211; $v_{\text {max }} / \mathrm{cm}^{-1} 1665(\mathrm{C}=0) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7,8-\mathrm{H}), 6.69(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and}$ $7-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eO}), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eN}), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, CH_{2}) and $2.57\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ 169.8 (C), 155.2 (C), 134.2 (C), 127.6 (C), 115.4 (CH), 113.8 $(\mathrm{CH}), 111.7(\mathrm{CH}), 55.4(\mathrm{M} \mathrm{eO})$, $31.6\left(\mathrm{CH}_{2}\right), 29.5(\mathrm{M} \mathrm{eN})$ and $25.6\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 192\left(\mathrm{M} \mathrm{H}^{+}\right)$.

3-E thoxycarbonyl-6-methoxy-1-methyl-3,4-dihydro-2(1H)quinolone 9

A stirred solution of thequinolone $8(209 \mathrm{mg}, 1.09 \mathrm{mmol})$ in dry

THF ($4.4 \mathrm{~cm}^{3}$) and ethyl cyanoformate ($160 \mathrm{~mm}^{3}, 1.64 \mathrm{mmol}$) under argon was cooled to $-78^{\circ} \mathrm{C}$ and a freshly prepared solution of lithium diisopropylamide ${ }^{21}$ in THF $\left(0.3 \mathrm{~mol} \mathrm{dm}^{-3} ; 8\right.$ $\mathrm{cm}^{3}, 2.4 \mathrm{mmol}$) was added over 1.5 h . Water was then added and the mixture was warmed to room temperature and extracted with diethyl ether. The combined organic layers were dried ($\mathrm{M} \mathrm{SSO}_{4}$) and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with diethyl ether-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 1$ and then $3: 1)$, to give recovered starting material ($59 \mathrm{mg}, 28 \%$) and ester 9 (201 $\mathrm{mg}, 70 \%$) as an oil (Found: $\mathrm{M} \mathrm{H}^{+}, 264.1250 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires M H, 264.1236); $v_{\text {max }} / \mathrm{cm}^{-1} 1732(\mathrm{C}=0)$ and $1667(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,8-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8$ and 2.8, 7-H), 6.73 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,5-\mathrm{H}$), $4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 3.76 $(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3\right.$ and $\left.5.8, \mathrm{CH}_{2} \mathrm{CH}\right), 3.28(1 \mathrm{H}$, dd, J 9.3 and 15.5, CH HCH), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eN}$), 3.02 (1 H , dd, J 15.5 and $5.8, \mathrm{CHHCH})$ and $1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{c}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 169.5$ (C), 166.2 (C), 155.6 (C), 133.5 (C), 125.5 (C), 115.8 (CH), 114.1 (CH), $112.4(\mathrm{CH}), 61.6\left(\mathrm{CH}_{2}\right)$, $55.6(\mathrm{M} \mathrm{eO}), 48.1(\mathrm{M} \mathrm{eN}), 30.1(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right)$ and $14.1(\mathrm{Me})$; $\mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 264\left(\mathrm{M} \mathrm{H}^{+}\right)$.

3-H ydroxymethyl-6-methoxy-1-methyl-1,2,3,4-tetrahydroquinoline 10

A solution of the quinolone 9 ($192 \mathrm{mg}, 0.73 \mathrm{mmol}$) in dry TH F $\left(6 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of lithium aluminium hydride ($56 \mathrm{mg}, 1.46 \mathrm{mmol}$) in dry THF ($1 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 1 h and then poured into a mixture of diethyl ether and ice. The organic layer was separated and the aqueous layer extracted with diethyl ether $\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with diethyl ether to give the alcohol 10 ($113 \mathrm{mg}, 75 \%$) as an oil (Found: M^{+}, 207.1246. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{M}, 207.1259$); $v_{\text {max }} / \mathrm{cm}^{-1} 3368$ ($0-\mathrm{H}$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{H} \mathrm{z}, \mathrm{CDCl}_{3}\right) 6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and $8.8,7-\mathrm{H})$, 6.61 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.0,5-\mathrm{H}$), 6.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,8-\mathrm{H}$), $3.73(3 \mathrm{H}, \mathrm{s}$, M eO), 3.69 (1 H , dd, J 10.6 and 5.7, CH H OH), 3.60 (1 H , dd, J 10.6 and $7.4, \mathrm{CHHOH}$), 3.23 (1 H , ddd, J 10.9, 3.7 and 1.4 , NCHH), 2.93 (1 H, dd, J 10.9 and 8.0, NCHH), $2.83(3 \mathrm{H}, \mathrm{s}$, MeN), 2.77 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and 5.6, ArCH H), 2.55 (dd, 1 H , J 16.2 and $8.5, \mathrm{ArCH}), 2.29-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $1.77(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 151.5$ (C), 141.3 (C), 123.5 (C), 115.2 (CH), 112.5 (CH), 112.2 (CH), $65.6\left(\mathrm{CH}_{2}\right), 55.7$ $(\mathrm{M} \mathrm{eO}), 54.0\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{M} \mathrm{eN}), 35.4(\mathrm{CH})$ and $30.4\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ (FAB + ve) $207\left(\mathrm{M} \mathrm{H}^{+}\right)$.

Isopropyl 4-bromocinnamate 12

A suspension of 4-bromocinnamic acid 11 ($1.03 \mathrm{~g}, 4.52 \mathrm{mmol}$) in propan-2-ol $\left(6 \mathrm{~cm}^{3}\right)$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.25 \mathrm{~cm}^{3}\right)$ was heated at reflux for 24 h , then cooled and poured onto ice. The mixture was extracted with diethyl ether and the extracts dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) $(2: 3)$, and the resulting oil was crystallised from ethanol to give the ester $12(1.16 \mathrm{~g}$, 95%) as prisms, mp $61-62^{\circ} \mathrm{C}$ (Found: C, 53.4; H, 4.8; Br, 29.6\%; M H ${ }^{+}$, 269.0201. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{2}$ requires C, 53.55; H, 4.9; $\mathrm{Br}, 29.7 \% ; \mathrm{MH}, 269.0178) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 283,218$ and 203; $v_{\text {max }} / \mathrm{cm}^{-1} 1707(\mathrm{C}=0)$ and $1638(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.58 and 6.38 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{CH}=\mathrm{CH}$), 7.50 and 7.36 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{ArH}$), 5.12 (1 H , septet, J 6.3, CHM e2) and $1.30(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,2 \times \mathrm{Me}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.2$ (C), 142.7 (CH), 133.5 (C) , 132.1 (CH), 129.4 (CH), 124.3 (C), $119.5(\mathrm{CH}), 68.0(\mathrm{CH})$ and $21.9(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 271$ and $269\left(\mathrm{M} \mathrm{H}^{+}\right)$.

Dimethyl 4-[(E)-2-(isopropox ycarbonyl)ethenyl]phenylphosphonate 13
A solution of the bromide $\mathbf{1 2}(1.0 \mathrm{~g}, 3.72 \mathrm{mmol})$ in dry toluene
$\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirred mixture of $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(215 \mathrm{mg}$ 0.186 mmol), dimethyl phosphite ($375 \mathrm{~mm}^{3}, 4.09 \mathrm{mmol}$) and freshly distilled triethylamine ($572 \mathrm{~mm}^{3}, 4.09 \mathrm{mmol}$) under argon at room temperature. The mixture was heated at $90^{\circ} \mathrm{C}$ for 6 h , then cooled to room temperature, diluted with diethyl ether, filtered through C elite and evaporated under reduced pressure. The residue was purified by flash column chromatography, elut ing with ethyl acetate-dichloromethane ($1: 1$), to yield the phosphonate $\mathbf{1 3}$ ($917 \mathrm{mg}, 83 \%$) as an oil (Found: MH^{+}, 299.1067. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{M} \mathrm{H}, 299.1048$); $v_{\max } / \mathrm{cm}^{-1} 1712(\mathrm{C}=0)$ and 1639 (C=C); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.79$ ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\mathrm{HP}} 12.9$ and $\mathrm{J}_{\text {нн }} 8.2, \mathrm{ArH}$), 7.64 and 6.47 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{CH}=\mathrm{CH}$), 7.43 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{ArH}$), $5.12\left(1 \mathrm{H}\right.$, septet, J $6.2, \mathrm{CHM} \mathrm{e}_{2}$), 3.78 and 3.72 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eO}$) and $1.29(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2,2 \times \mathrm{M} \mathrm{e})$; $\delta_{\mathrm{c}}(100$ $\mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) 165.9 (C), 142.7 (CH), 138.5 (C), 132.4 (CH, J cp 10), 128.5 (C, J сp 190), 127.8 (CH, J cp 15), 121.5 (CH), $68.1(\mathrm{CH}), 52.8(\mathrm{M} \mathrm{eO}), 52.7(\mathrm{M} \mathrm{eO})$ and $21.9(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}$ (FAB + ve) $299\left(\mathrm{M} \mathrm{H}^{+}\right)$and $257\left(\mathrm{M}^{+}-\mathrm{CHM} \mathrm{e} \mathrm{e}_{2}\right)$.

4-[(E)-2-(I sopropox ycarbonyl)ethenyl]phenyIphosphonic acid 14 A suspension of phosphonate $13(631 \mathrm{mg}, 2.12 \mathrm{mmol})$ and anhydrous sodium iodide ($1.26 \mathrm{~g}, 8.47 \mathrm{mmol}$) in dry acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ under argon at room temperature was stirred with chlorotrimethylsilane ($1.2 \mathrm{~cm}^{3}, 8.47 \mathrm{mmol}$) for 1 h . The solvent was evaporated under reduced pressure, water was added (20 cm^{3}) and the aqueous layer was extracted with diethyl ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated. The residue was recrystallised from ethyl acetate to give phosphonic acid $\mathbf{1 4}(570 \mathrm{mg}, 99 \%)$ as an amorphous solid, mp 175-176 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.4; H, 5.6; P, 11.5\%; $\mathrm{M} \mathrm{H}^{+}, 271.0721 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}, 5.6$; $\mathrm{P}, 11.5 \%$; M H, 271.0735); $v_{\text {max }} / \mathrm{cm}^{-1} 3422(0-\mathrm{H}), 1716(\mathrm{C}=0)$ and 1637 ($\mathrm{C}=\mathrm{C}$) ; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}\right) 7.82\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\text {нн }} 8.3\right.$ and J_{H} 13.0, ArH) , 7.72-7.66 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}$ and $2 \times \mathrm{ArH}$), 6.60 (1 H d, J 16.1, C=CH), $5.09(1 \mathrm{H}$, septet, J 6.3, CH M e e $)$ and 1.30 (6 $\mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,2 \times \mathrm{Me}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{APT}, \mathrm{CD}_{3} \mathrm{OD}\right) 168.1$ (C), 145.4 (CH), 141.2 (C, J cp 176), 136.9 (C), 132.4 (CH , J cp 9), 128.5 (CH , J cp 14), 120.3 (CH), $69.3(\mathrm{CH})$ and $22.1(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}$ ($\mathrm{FAB}+\mathrm{ve}$) $271\left(\mathrm{MH}^{+}\right)$.

(6-M ethoxy-1-methyl-1,2,3,4-tetrahydroquinolin-1-ium-3-yl)methyl 4 -[(E)-2-(isopropoxycarbonyl)ethenyl]phenylphosphonate 15

A solution of 1,3-dicyclohexylcarbodiimide (DCC) (85 mg , 0.41 mmol) in dry THF ($1 \mathrm{~cm}^{3}$) was added to a stirred suspension of alcohol 10 ($106 \mathrm{mg}, 0.75 \mathrm{mmol}$), 4-dimethylaminopyridine ($36 \mathrm{mg}, 0.75 \mathrm{mmol}$) and phosphonic acid 14 (101 mg , 0.37 mmol) in dry THF ($3 \mathrm{~cm}^{3}$) under argon. The resultant suspension was heated at reflux for 3 h . A fter cooling to room temperature the dicyclohexylurea was removed by filtration, water was added ($10 \mathrm{~cm}^{3}$) and the aqueous layer was extracted with chloroform ($4 \times 25 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with dichloromethane-methanol ($95: 5$ then $85: 15$), to yield the phosphonate ester $\mathbf{1 5}$ ($114 \mathrm{mg}, 67 \%$) as an amorphous solid (Found: $\mathrm{M} \mathrm{H}^{+}, 460.1896 . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{M} \mathrm{H}, 460.1889$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420(0-\mathrm{H})$ and $1712(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $7.80(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.8$ and $8, \mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.1, \mathrm{CH}=\mathrm{C})$, 7.52 (2 H , dd, J 8 and 3, ArH) , 6.59-6.42 ($4 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}$ and $\mathrm{C}=\mathrm{CH}), 5.08\left(1 \mathrm{H}\right.$, septet, J $\left.6.3, \mathrm{CH} \mathrm{M} \mathrm{e}_{2}\right), 3.73-3.54(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}$), $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.06(1 \mathrm{H}, \mathrm{dJ} 9.9, \mathrm{NHCHH}), 2.72-$ $2.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCHH}$ and NHCHH$), 2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{MeN}), 2.36$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $9.1, \mathrm{ArCHH}$), $2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$ and 1.25 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHM} \mathrm{e} 2$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}\right.$, APT, CD ${ }_{3} \mathrm{OD}$) 167.8 (C), 153.1 (C), 145.0 (CH), 142.3 (C), 138.3 (C, J cp 182), 137.3 (C), 133.4 (CH , J cp 9), 128.5 (CH, J cp 14), 124.6 (C), 120.6 (CH), 116.0 (CH), $113.9(\mathrm{CH}), 113.2(\mathrm{CH}), 69.3(\mathrm{CH}), 67.7$ $\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{M} \mathrm{eO}), 54.9\left(\mathrm{CH}_{2}\right), 40.4(\mathrm{M} \mathrm{eN}), 35.3(\mathrm{CH}), 31.2$ $\left(\mathrm{CH}_{2}\right)$ and $22.2\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 460\left(\mathrm{M} \mathrm{H}^{+}\right)$.
(6-M ethoxy-1-methyl-1,2,3,4-tetrahydroquinolin-1-ium-3-yl)methyl 4-[(E)-2-carbox yethenyI]phenylphosphonate 4
A solution of the ester $\mathbf{1 5}(110 \mathrm{mg}, 0.24 \mathrm{mmol})$ was stirred with a solution of potassium hydroxide in methanol ($2.7 \mathrm{~mol} \mathrm{dm}^{-3}$; 4 cm^{3}) under argon at room temperature for 24 h and then evaporated under reduced pressure. The residue was dissolved in water ($10 \mathrm{~cm}^{3}$) and D owex-50W X8-400 (NH_{4}^{+}) ion exchange resin was added until the pH dropped to between 9-10. The ion exchange resin was filtered off and the filtrate was lyophilised to give the acid 4 ($95 \mathrm{mg}, 95 \%$) as an amorphous solid (Found: MH^{+}, 418.1445. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{MH}, 418.1419$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 2928\left(\mathrm{~N}^{+}-\mathrm{H}\right)$ and $1636(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $7.78(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.8$ and $8.0, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and 2.8 , ArH), 7.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0, \mathrm{CH}=\mathrm{C}$), 6.61-6.50 ($4 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}$ and $\mathrm{C}=\mathrm{CH}), 3.78-3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHO}), 3.74-3.48(1 \mathrm{H}, \mathrm{m}$, CHHO), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), $3.15(1 \mathrm{H}, \mathrm{dd}$, J 11.0 and 2.7 , NHCHH), 2.78 (1 H, dd, J 10.6 and 9.0, NHCHH), 2.72 (3 H , s, M eN), 2.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5$ and 5.3, A rCH H), $2.46(1 \mathrm{H}$, dd, J 16.5 and $9.2, \mathrm{ArCHH})$ and $2.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right) ; \delta_{\mathrm{c}}(100$ M Hz, APT, CD ${ }_{3}$ OD) 171.6 (C), 153.3 (C), 144.6 (CH), 142.4 (C), 138.3 (C, J cp 176), 137.9 (C) , 133.1 (CH , J cp 9), 128.4 (CH, $J_{\text {CP }} 14$), 124.9 (C), 122.6 (CH), 116.1 (CH), 114.0 (CH), 113.4 (CH), $67.7\left(\mathrm{CH}_{2}\right), 56.1(\mathrm{M} \mathrm{eO}), 55.0\left(\mathrm{CH}_{2}\right), 40.4(\mathrm{M} \mathrm{eN}), 35.5$ (CH) and $31.0\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 418\left(\mathrm{M} \mathrm{H}^{+}\right)$.

M ethyl 2-acetyl-5-methoxyphenylacetate 18

A solution of methyl 3-methoxyphenylacetate $\mathbf{1 6}(651 \mathrm{mg}, 3.61$ mmol) in acetyl chloride ($0.26 \mathrm{~cm}^{3}, 3.61 \mathrm{mmol}$) was added dropwise to a stirred suspension of $\mathrm{AlCl}_{3}(1.06 \mathrm{~g}, 7.95 \mathrm{mmol})$ in dry dichloromethane ($3 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. The resultant suspension was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 30 min at room temperature, then poured into 10% hydrochloric acid ($20 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was crystallised from diethyl ether to give ketone $18(476 \mathrm{mg}, 60 \%)$ as needles, $\mathrm{mp} 86-87^{\circ} \mathrm{C}$ (Found: C, 64.75; H, 6.4\%; M ${ }^{+}$, 222.0892. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C , $64.85 ; \mathrm{H}, 6.35 \% ; \mathrm{M}, 222.0892$); $v_{\max } / \mathrm{cm}^{-1} 1736$ ($\mathrm{C}=0$) and 1665 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7,3-\mathrm{H}), 6.85(1 \mathrm{H}$, dd, J 8.7 and $2.4,4-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,6-\mathrm{H}), 3.91(2 \mathrm{H}, \mathrm{s}$, CH_{2}), 3.84 and 3.69 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$) and $2.53(3 \mathrm{H}, \mathrm{s}$, M eCO); $\delta_{\mathrm{C}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 199.0$ (C), 171.7 (C), 162.2 (C), 137.6 (C), 133.0 (CH), 129.3 (C), 118.7 (CH), 111.7 (CH), $55.4(\mathrm{M} \mathrm{eO}), 51.8(\mathrm{M} \mathrm{eO}), 41.0\left(\mathrm{CH}_{2}\right)$ and $28.3(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $222\left(\mathrm{M}^{+}\right)$.

M ethyl 5-methoxy-2-(1-methylethenyl)phenylacetate 19

A solution of Tebbe's reagent in toluene (ca. $0.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 22.5$ $\mathrm{cm}^{3}, 11.2 \mathrm{mmol}$) was added slowly to a stirred solution of the ketone $18(2.27 \mathrm{~g}, 10.2 \mathrm{mmol})$ in dry TH F ($35 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h and then was diluted with diethyl ether ($125 \mathrm{~cm}^{3}$). Aqueous sodium hydroxide ($0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; 10-20 drops) was added very slowly and then the mixture was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, filtered through Celite and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) (1:9), to yield alkene 19 ($2.18 \mathrm{~g}, 97 \%$) as an oil (Found: M^{+}, 220.1098. $\mathrm{C}_{13} \mathrm{H}_{16^{-}}$ O_{3} requires $\mathrm{M}, 220.1099$); $v_{\text {max }} / \mathrm{cm}^{-1} 1738(\mathrm{C}=0)$ and 1608 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3,3-\mathrm{H}), 6.79(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.20$ and 4.80 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CHH}), 3.79(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}), 3.67\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ and MeO$)$ and $2.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9, \mathrm{Me})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 172.3$ (C), 158.3 (C), 144.3 (C), 136.6 (C), 132.0 (C), 129.1 (CH), $115.6\left(\mathrm{CH}_{2}\right), 115.5(\mathrm{CH})$, $112.6(\mathrm{CH}), 55.2(\mathrm{M} \mathrm{eO}), 52.0(\mathrm{M} \mathrm{eO}), 38.7\left(\mathrm{CH}_{2}\right)$ and 25.1 (Me); m/z (EI) $220\left(\mathrm{M}^{+}\right)$and $205\left(\mathrm{M}^{+}-\mathrm{Me}\right)$.

2-[5-M ethoxy-2-(1-methylethenyl)phenyl]ethanol 21

A solution of the ester 19 ($758 \mathrm{mg}, 3.45 \mathrm{mmol}$) in dry diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ was added via cannula to a stirred suspension of
lithium aluminium hydride ($261 \mathrm{mg}, 6.9 \mathrm{mmol}$) in dry diethyl ether $\left(1 \mathrm{~cm}^{3}\right)$ under argon at $0^{\circ} \mathrm{C}$. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then was poured into a mixture of ice and diethyl ether. The mixture was acidified with 10% hydrochloric acid and extracted with diethyl ether ($3 \times 30 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (2:3), to yield the alcohol 21 ($649 \mathrm{mg}, 98 \%$) as an oil (Found: M^{+}, 192.1150. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires M 192.1150); $v_{\text {max }} / \mathrm{cm}^{-1} 3348(0-\mathrm{H})$ and $1606(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 7.06 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1,3-\mathrm{H}$), $6.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6,6-$ H), $6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and $2.6,4-\mathrm{H}), 5.18$ and 4.83 (each 1 H , br s, $\mathrm{C}=\mathrm{CHH}$), 3.78 ($5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$ and MeO), 2.89 (2 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 8.1, \mathrm{ArCH}_{2}\right), 2.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 158.2$ (C), 144.9 (C), 136.6 (C), 136.1 (C), 129.2 (CH), $115.2\left(\mathrm{CH}_{2}\right), 115.0(\mathrm{CH}), 111.3$ (CH), $63.4\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{M} \mathrm{eO}), 36.3\left(\mathrm{CH}_{2}\right)$ and $25.3(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}$ (EI) $192\left(\mathrm{M}^{+}\right)$.

2-[5-M ethoxy-2-(1-methylethenyl)phenyl]ethyl toluene-psulfonate 22

A solution of alcohol $21(1.03 \mathrm{~g}, 5.35 \mathrm{mmol})$ in dry pyridine (15 cm^{3}) was stirred with tosyl chloride ($2.04 \mathrm{~g}, 10.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon for 6 h and then was kept in the freezer overnight. The mixture was poured into ice-water and extracted with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (1:3), to yield toluene-p-sulfonate 22 ($1.77 \mathrm{~g}, 84 \%$) as an oil (Found: M^{+}, 346.1234. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}, 346.1239$); $v_{\text {max }} / \mathrm{cm}^{-1} 1607$ ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.67$ and 7.27 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$, Ts, ArH), $6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,3-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and 2.6 , 4-H), $6.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6,6-\mathrm{H}), 5.09$ and 4.65 (each $1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{C}=\mathrm{CH} H), 4.14\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{O}\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 2.95(2$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM} \mathrm{e})$ and $1.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $0.8, \mathrm{C}=\mathrm{CM} \mathrm{e}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}^{2} \mathrm{CDCl}_{3}\right) 158.3$ (C), 144.6 (C), 144.4 (C), 136.6 (C), 133.8 (C), 132.8 (C), 129.7 (CH), 129.3 (CH), $127.8(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 115.0(\mathrm{CH}), 112.2(\mathrm{CH}), 70.5$ $\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{MeO}), 32.6\left(\mathrm{CH}_{2}\right), 25.3(\mathrm{Me})$ and $21.6(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}$ (EI) $346\left(\mathrm{M}^{+}\right)$.

2,5-D iphenyl-1,3-dioxane 28

Freshly distilled benzaldehyde ($3.7 \mathrm{~cm}^{3}, 37 \mathrm{mmol}$) was added to a stirred suspension of the diol $27^{15}(3.51 \mathrm{~g}, 23.1 \mathrm{mmol})$ and anhydrous $\mathrm{ZnCl}_{2}\left(4.09 \mathrm{~g}, 30 \mathrm{mmol}\right.$) in chloroform ($115 \mathrm{~cm}^{3}$). The mixture was stirred overnight at room temperature, then diluted with water and extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with dilute aqueous sodium thiosulfate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the cyclic acetal $28(4.16 \mathrm{~g}$ 75%) as needles, $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ [from dichloromethane-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (2:98)] (Found: C, 80.2; H , 6.8\%; $\mathrm{M} \mathrm{H}^{+}$, 241.1241. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.0 ; \mathrm{H}, 6.7 \% ; \mathrm{M} \mathrm{H}, 241.1228$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 209 ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.68-7.57(2 \mathrm{H}, \mathrm{m}$, ArH), 7.49-7.25 (8H, m, ArH), $5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}$ O), 4.46-4.37 $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHH})$ and $4.09(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.2,2 \times \mathrm{CHH})$ and 3.50-3.34 (1 H, m, PhCH) ; $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 138.2$ (C), 137.6 (C), 128.9 (CH), 128.8 (CH), 128.3 (CH), 127.6 (CH), 127.4 $(\mathrm{CH}), 126.1(\mathrm{CH}), 101.5(\mathrm{CH}), 72.3(\mathrm{CH})$ and $41.1\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ ($\mathrm{FAB}+\mathrm{ve}$) $241\left(\mathrm{MH}^{+}\right)$.

3-B enzyloxy-2-phenylpropan-1-ol 29

A solution of diisobutylaluminium hydride in toluene (1.5 mol $\mathrm{dm}^{-3} ; 18.3 \mathrm{~cm}^{3}, 27.5 \mathrm{mmol}$) was added to a stirred solution of the acetal $28(2.2 \mathrm{~g}, 9.17 \mathrm{mmol})$ in dry toluene ($8 \mathrm{~cm}^{3}$) under argon at room temperature. The mixture was stirred for 3 h and then quenched with MeOH at $0^{\circ} \mathrm{C}$. Water was added and the mixture was acidified to pH 4 . The organic layer was separated
and the aqueous phase was extracted with diethyl ether (3×50 $\left.\mathrm{cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (1:3), to yield recovered starting material ($70 \mathrm{mg}, 3 \%$) and alcohol 29 ($2.09 \mathrm{~g}, 94 \%$) as an oil (Found: $\mathrm{M} \mathrm{H}^{+}, 243.1378 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{M} \mathrm{H}, 243.1385$); $v_{\text {max }} / \mathrm{cm}^{-1} 3410(0-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.42-7.20(10 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.09-3.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 3.30-3.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHPh}$) and $2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(100$ $\mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) 139.6 (C), 137.8 (C), 128.6 (CH), 128.4 (CH), 128.0 (CH), 127.7 (CH), 127.6 (CH), $127.0(\mathrm{CH}), 73.6$ $\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 66.4\left(\mathrm{CH}_{2}\right)$ and $47.8(\mathrm{CH}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve})$ $243\left(\mathrm{M} \mathrm{H}^{+}\right)$.

N-(3-Benzyloxy-2-phenylpropyl)succinimide 30

A solution of the alcohol 29 ($2.09 \mathrm{~g}, 8.63 \mathrm{mmol}$), succinimide $(1.11 \mathrm{~g}, 11.2 \mathrm{mmol})$ and diethyl azodicarboxylate ($1.5 \mathrm{~cm}^{3}, 9.5$ mmol) in dry THF ($35 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$ was treated with a solution of triphenylphosphine ($2.5 \mathrm{~g}, 9.5 \mathrm{mmol}$) in dry TH F ($9.5 \mathrm{~cm}^{3}$) and then stirred at room temperature for 6 h . Water was added ($10 \mathrm{~cm}^{3}$) and the mixture was extracted with dichloromethane $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(2: 3)$, to give recovered starting alcohol $29(198 \mathrm{mg}$, 9%) and succinimide $30(2.4 \mathrm{~g}, 86 \%)$ as an oil. Recrystallisation from ethanol gave 30 as needles, $\mathrm{mp} 69-70^{\circ} \mathrm{C}$ (Found: C, 74.3; $\mathrm{H}, 6.6$; $\mathrm{N}, 4.2 \%$; $\mathrm{M} \mathrm{H}^{+}$, 324.1618. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, 74.3; H, 6.5; N, 4.3\%; M H, 324.1600); $v_{\text {max }} / \mathrm{cm}^{-1} 1698$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.21$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.46 and 4.40 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{OCHHPh}), 3.97-3.51(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$ and $2.38\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}, \mathrm{APT}$, CDCl_{3}) 177.3 (C), 139.2 (C), 138.1 (C), 128.5 (CH), 128.3 $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 127.2(\mathrm{CH}), 73.5\left(\mathrm{CH}_{2}\right), 73.2$ $\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right)$ and $27.9\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve})$ $324\left(\mathrm{M} \mathrm{H}^{+}\right)$.

1-(3-B enzyloxy-2-phenyIpropyl)-5-ethoxy-2-pyrrolidone 31

A stirred solution of succinimide 30 ($568 \mathrm{mg}, 1.76 \mathrm{mmol}$) in absolute ethanol ($35 \mathrm{~cm}^{3}$) was stirred with sodium borohydride ($475 \mathrm{mg}, 12.3 \mathrm{mmol}$) under argon for 5 h , during which time a solution of conc. hydrochloric acid in absolute ethanol ($1.85 \mathrm{~mol} \mathrm{dm}^{-3} ; 3$ drops) was added every 15 min . The mixture was then acidified to pH 3 with more ethanolic hydrochloric acid. The resultant mixture was poured into dilute aqueoussodium hydrogen carbonateand extracted with dichloromethane. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to yield ethoxylactam 31 ($593 \mathrm{mg}, 96 \%$) as an oil, which N M R spectroscopy showed to be a mixture of diastereoisomers (ca. 1.3:1) (Found: MH^{+}, 354.2072. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $\mathrm{M} \mathrm{H}, 354.2069$); $v_{\text {max }} / \mathrm{cm}^{-1} 1698$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 7.33-7.19 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.75 ($0.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.3$ and 3.2, CH OEt), 4.50 and 4.47 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 16.9, OCH H Ph), 4.29 ($0.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3$ and 2.3, CH OEt), 4.01 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.6$ and $6.4, \mathrm{CH}$ H OBn), 3.90 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 8.1, CH HOBn), 3.70-3.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}$ e, 3.49-3.17 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right.$ PhCHH OBn), 2.41 and 2.22-2.07 (each 1 H , $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=0$), 1.86-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOEt}$) and 1.18 and 1.13 (each $1.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{Me}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ (major diastereoisomer) 175.1 (C), 141.0 (C), 138.3 (C), 128.5 (CH), 128.2 (CH), $127.5(\mathrm{CH}), 127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 89.2$ $(\mathrm{CH}), 73.0\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right), 44.4(\mathrm{CH}), 43.6$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$ and $15.2(\mathrm{M} \mathrm{e)}$; (minor diastereoisomer) 175.1 (C), 140.1 (C), 138.2 (C), 128.4 (CH), 128.1 (CH), 128.0 (CH), 127.5 (CH), 126.9 (CH), 89.1 (CH), 73.1 $\left(\mathrm{CH}_{2}\right), 72.7\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{2}\right), 44.0(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$ and $15.3(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 354$ (MH^{+}).

6 -B enzyloxymethyl-1,5,6,10b-tetrahydrobenzo[g]indolizin-

 3(2H)-one 32A solution of the ethoxylactam $\mathbf{3 1}(94 \mathrm{mg}, 0.27 \mathrm{mmol})$ in formic acid $\left(6 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 22 h and then evaporated under reduced pressure. The residue was dissolved in dichloromethane and washed with dilute aqueous sodium hydrogen carbonate. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (3:1), to give the tricyclic lactam 32 ($58 \mathrm{mg}, 71 \%$) as an oil (Found: $\mathrm{M} \mathrm{H}^{+}, 308.1669$. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{M} \mathrm{H}, 308.1650$), which $\mathrm{NM} R$ spectroscopy showed to be a mixture of diastereoisomers (8.4:1); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1716 and $1682(\mathrm{C}=0)$; m/z ($\mathrm{FAB}+\mathrm{ve}$) 308 ($\mathrm{M} \mathrm{H}^{+}$). The two isomers were separated by PLC, eluting with dichloromethaneacetone ($9: 1$), for N M R analysis.

For the major ($6 \mathrm{R}^{*}, 10 \mathrm{bS} \mathrm{S}^{*}$)-isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 7.37-7.09 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.2,10 \mathrm{~b}-\mathrm{H}), 4.58$ and 4.47 (each 1 H, d, J 11.7, PhCH H), 4.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1,5-\mathrm{H}_{\beta}$), $3.49(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J} 9.4,4.3$ and $4.0,6-\mathrm{H}$), $3.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.4$, CH H OBn), 3.11 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.4$ and 4.3, CHHOBn), 3.05 (1 H , dd, J 13.1 and $\left.4.0,5-\mathrm{H}_{\alpha}\right), 2.70-2.54\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\alpha}\right.$ and $2-\mathrm{H}_{\beta}$), $2.46\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\alpha}\right)$ and $1.75\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\beta}\right) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$, APT, CDCl_{3}) 173.6 (C), 138.2 (C), 137.9 (C), 133.7 (C), 130.1 (CH), 128.3 (CH), 127.8 (CH), 127.5 (CH), 127.3 (CH), 126.8 (CH), 124.8 (CH), $73.5\left(\mathrm{CH}_{2}\right), 73.3\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{CH}), 39.4(\mathrm{CH}), 38.1$ $\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right)$ and $27.9\left(\mathrm{CH}_{2}\right)$.

For the minor (6S*,10bS*)-isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 7.35-7.11 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,10 \mathrm{~b}-\mathrm{H}), 4.56$ and 4.52 (each 1 H, d, J 12.5, PhCH H), 4.43 (1 H, dd, J 13.1 and $\left.6.2,5-\mathrm{H}_{\beta}\right), 3.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5$ and $4.8, \mathrm{CH}$ HOBn), $3.68(1 \mathrm{H}$, dd, J 9.5 and 6.7, CH H OBn), $3.25(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.06(1 \mathrm{H}, \mathrm{dd}$, J 13.1 and $\left.9.7,5-\mathrm{H}_{\alpha}\right), 2.70-2.51\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\alpha}\right.$ and $\left.2-\mathrm{H}_{\beta}\right), 2.44(1$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\alpha}$) and 1.92-1.82 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\beta}$) ; $\delta_{\mathrm{c}}(100 \mathrm{MHz}$, APT, CDCl_{3}) 173.2 (C), 138.1 (C), 138.0 (C), 134.7 (C), 128.4 (CH), $127.7(2 \times \mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 124.8$ $(\mathrm{CH}), 73.2\left(\mathrm{CH}_{2}\right), 71.3\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{CH}), 40.2\left(\mathrm{CH}_{2}\right), 37.6$ $(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right)$ and $27.5\left(\mathrm{CH}_{2}\right)$.

6-H ydroxymethyl-1,5,6,10b-tetrahydrobenzo[g]indolizin-3(2H)one 33

The mixture of diastereoisomeric benzyl ethers 32 ($85 \mathrm{mg}, 0.28$ mmol) and 10% palladium-on-carbon (85 mg) were stirred in absolute ethanol $\left(2 \mathrm{~cm}^{3}\right)$ under an atmosphere of hydrogen for 8 h. The mixture was then filtered through Celite, washing with more absolute ethanol. The filtrate and washings were evaporated under reduced pressure and the residue was purified by flash column chromatography, eluting with dichloromethanetetrahydrofuran ($4: 1$), to give a mixture of the diastereoisomeric alcohols 33 ($35 \mathrm{mg}, 58 \%$) as a solid. Recrystallisation from ethanol gave the ($6 \mathrm{R}^{*}, 10 \mathrm{bS}$) -isomer as prisms, $\mathrm{mp} 157-158^{\circ} \mathrm{C}$ (Found: C, 71.7; H, 7.0; N, 6.35\%; M H ${ }^{+}$, 218.1181. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{2}$ requires C, 71.9; H,6.95; N, 6.45\%; M H, 218.1181); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3324(\mathrm{O}-\mathrm{H})$ and $1672(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ 7.28-7.10 (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.86 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8,10 \mathrm{~b}-\mathrm{H}$), $4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3,5-$ H_{β}), 3.67-3.60 and 3.37-3.31 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 3.13-3.00 $(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}$ and OH$), 2.76-2.60\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{\beta}}\right.$ and 1$\left.\mathrm{H}_{\alpha}\right)$, 2.52-2.45 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\alpha}$) and 1.91-1.81 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\beta}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 174.8(\mathrm{C}), 137.8(\mathrm{C}), 133.9(\mathrm{C})$, 129.8 (CH), 127.5 (CH), 126.9 (CH), 125.2 (CH), 64.9 (CH), $57.1\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right)$ and $27.8\left(\mathrm{CH}_{2}\right)$; $\mathrm{m} / \mathrm{z}(\mathrm{Cl}) 435\left(2 \mathrm{M}+\mathrm{H}^{+}\right), 235\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$and $218\left(\mathrm{M} \mathrm{H}^{+}\right)$.

For NMR analysis the minor (6S*,10bS*)-isomer was obtained pure from the mother liquors by PLC eluting with dichloromethane-methanol ($19: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.36$ and 7.12 (each $1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8$ and $3.6,7-$ and $10-\mathrm{H}), 7.23(2 \mathrm{H}$, $\mathrm{m}, 8$ - and $9-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,10 \mathrm{~b}-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3$ and $\left.10.5,5-\mathrm{H}_{\alpha}\right), 3.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and $3.7, \mathrm{CH} \mathrm{HOH}), 3.90(1$ H , dd, J 11.3 and $5.8, \mathrm{CHHOH}), 3.12\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\mathrm{\beta}}\right)$, $2.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.70-2.62\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\alpha}\right), 2.59-2.50(1 \mathrm{H}$,
m, 2- H_{a}), 2.45-2.38 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\beta}$) and 1.91-1.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{l}-$ H_{B}); $\delta_{\mathrm{C}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) 173.5$ (C), 138.3 (C), 134.2 (C), $127.3(\mathrm{CH}), 127.0(\mathrm{CH}), 126.9(\mathrm{CH}), 124.9(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right)$, $56.7(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 39.5(\mathrm{CH}), 31.5\left(\mathrm{CH}_{2}\right)$ and $27.4\left(\mathrm{CH}_{2}\right)$.

1,2,3,5,6,10b-H exahydrobenzo[g]indolizine-6-methanol 34

A solution of the (6 R $*, 10 \mathrm{bS}$) -alcohol 33 ($210 \mathrm{mg}, 0.97 \mathrm{mmol}$) in dry TH F ($18 \mathrm{~cm}^{3}$) was added to a stirred suspension of lithium aluminium hydride ($75 \mathrm{mg}, 1.94 \mathrm{mmol}$) in dry THF($2 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 1 h , then cooled and poured into a mixture of diethyl ether and ice. The organic layer was separated and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with dichloromethane-methanol (17:3) to yield the amine 34 ($183 \mathrm{mg}, 93 \%$) as an oil (Found: $\mathrm{MH}^{+}, 204.1388$. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{MH}, 204.1388$); $v_{\text {max }} / \mathrm{cm}^{-1} 3354(\mathrm{O}-\mathrm{H})$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) $7.26-7.08(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 2.7 and $9.9, \mathrm{CHHOH}), 3.38(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 2.0$ and 3.2 and 9.9 , $\mathrm{CHHOH}), 3.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.1,5-\mathrm{H}_{\beta}\right), 3.22-3.17(2 \mathrm{H}, \mathrm{m}), 2.99$ ($1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H}$), 2.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.1,5-\mathrm{H}_{\mathrm{a}}$), 2.43-2.34 ($2 \mathrm{H}, \mathrm{m}$), 1.96-1.87 ($2 \mathrm{H}, \mathrm{m}$) and 1.77-1.69 ($1 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$, APT, CDCl_{3}) 138.5 (C), 135.2 (C), 128.0 (CH), 126.9 (CH), 126.5 $(\mathrm{CH}), 124.9(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2}\right), 64.8(\mathrm{CH}), 54.1\left(\mathrm{CH}_{2}\right), 53.0$ $\left(\mathrm{CH}_{2}\right), 40.0(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right)$ and $21.5\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 204$ $\left(\mathrm{M} \mathrm{H}^{+}\right)$.

(1,2,3,5,6,10b-H exahydrobenzo[g]indolizin-4-ium-6-yl)methyl 4-[(E)-2-(isopropoxycarbonyl)ethenyl]phenylphosphonate 35

 To a stirred suspension of the phosphonic acid 14 ($55 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in dry DM F ($1 \mathrm{~cm}^{3}$) at $-15^{\circ} \mathrm{C}$ under argon was added thionyl chloride ($20 \mathrm{~mm}^{3}, 0.24 \mathrm{mmol}$). The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then a solution of the alcohol 34 ($82 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry DM F ($1 \mathrm{~cm}^{3}$) was added and the mixture was stirred at room temperature for a further 24 h . Water was added ($1 \mathrm{~cm}^{3}$) and the mixture was extracted with diethyl ether ($6 \times 10 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by PLC, eluting with propan-1-ol-waterammonia (18:1:1), to yield the phosphonate ester 35 (32 $\mathrm{mg}, 35 \%$) as an amorphous solid (Found: MH^{+}, 456.1933. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{P}$ requires MH , 456.1939); $v_{\text {max }} / \mathrm{cm}^{-1} 3139-3030$ $(\mathrm{N}-\mathrm{H})$ and $1703(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}\right) 7.71(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 11.9 and $8.0, \mathrm{ArH}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0, \mathrm{CH}=\mathrm{C}), 7.59(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.0 and $2.8, \mathrm{ArH}), 7.30-7.21(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0$, $\mathrm{C}=\mathrm{CH}$), $5.09(1 \mathrm{H}$, septet, J 6.3, CH M e 2), $4.49(1 \mathrm{H}, \mathrm{dd}$, J 7.3 and 8.4), $4.25(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.60-3.43(5 \mathrm{H}, \mathrm{m}), 2.71$ $(1 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}$, quintet, J 11.1$)$ and $1.31(6 \mathrm{H}$, d, J 6.3, CHM e 2); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$, APT, CD 3 OD) 168.0 (C), 145.1 (CH), 138.9 (C, J 176), 137.7 (C), 133.7 (C), 133.1 (CH, J 9), 132.7 (C), 129.0 (CH, J 14), 128.8 (CH), 128.7 (CH), 127.9 $(\mathrm{CH}), 127.6(\mathrm{CH}), 120.8(\mathrm{CH}), 69.5(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2}\right), 65.0$ $(\mathrm{CH}), 55.9\left(\mathrm{CH}_{2}\right), 50.9\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 22.1$ $\left(\mathrm{CH}_{2}\right)$ and $22.1(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 456\left(\mathrm{M} \mathrm{H}^{+}\right)$.
(1,2,3,5,6,10b-H exahydrobenzo[g]indolizin-4-ium-6-yl)methyl 4-[(E)-2-carbox yethenyl]phenyIphosphonate 25

 A solution of the ester 32 ($21 \mathrm{mg}, 46.2 \mu \mathrm{~mol}$) in methanolic potassium hydroxide ($2.7 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{~cm}^{3}$) was stirred under argon at room temperature for 24 h and then evaporated under reduced pressure. The residue was dissolved in water ($10 \mathrm{~cm}^{3}$) and D owex-50W X 8-400 ($\mathrm{NH}_{4}{ }^{+}$) ion exchange resin was added until the pH dropped to between 9 and 10. The resin was filtered off and the filtrate was lyophilised to yield the acid 25 (18 mg , 95%) as an amorphous solid (Found: MH^{+}, 414.1481. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$ requires MH , 414.1470); $v_{\text {max }} / \mathrm{cm}^{-1} 3422-3144$ $(0-\mathrm{H})$ and $1700(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}\right) 7.70(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 11.8 and 8.1, ArH), 7.55 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9$ and 8.1, ArH), 7.51 (1 H, d, J 16.0, CH=C), 7.32-7.21 (4 H, m, ArH), 6.55 (1 H, d, J16.0, $C=C H$), $4.47(1 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{m}), 3.49-$ $3.41(5 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{m})$ and $2.03(1 \mathrm{H}$ quintet, J 10.8); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CD}_{3} \mathrm{OD}\right) 173.4$ (C), 145.4 (CH), 141.9 (CH), 138.8 (C), 136.8 (C, J 178), 134.0 (C), 133.0 (CH, J 9), 129.3 (CH), 128.6 (CH), 128.3 (CH, J 14), 128.0 (CH), $127.6(\mathrm{CH}), 125.5(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2}\right), 64.9(\mathrm{CH}), 55.9$ $\left(\mathrm{CH}_{2}\right), 50.9\left(\mathrm{CH}_{2}\right), 38.5(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right)$ and $22.2\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ (FAB + ve) $414\left(\mathrm{MH}^{+}\right)$.

3-[2-(tert-B utyldimethylsilyloxymethyl)phenyl]-5-(tert-butyl-diphenyIsilyloxy)pent-1-ene 39

A suspension of alcohol $\mathbf{3 8}^{4}(518 \mathrm{mg}, 1.69 \mathrm{mmol})$ and imidazole ($288 \mathrm{mg}, 4.23 \mathrm{mmol}$) in dry DM F ($4.2 \mathrm{~cm}^{3}$) under argon at room temperature was stirred with chloro(tert-butyl)diphenylsilane ($660 \mathrm{~mm}^{3}, 2.54 \mathrm{mmol}$) for 24 h , then diluted with water ($25 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($10 \mathrm{~cm}^{3}$). The organic layer was washed with water $\left(3 \times 25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$) (1:19), to yield the silyl ether 39 (908 $\mathrm{mg}, 99 \%$) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1632(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ 7.67-7.59 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.48-7.13 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$), $5.90-$ $5.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.84$ and 4.81 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3, \mathrm{ArCH} H$), 3.79 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.4, \mathrm{ArCH}$), 3.64 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.97\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.05$ and 0.93 (each $9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$) and 0.07 and 0.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}$) ; $\left.\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}, \mathrm{APT}, \mathrm{CDCl})_{3}\right) 141.3(\mathrm{CH}), 140.5(\mathrm{C}), 138.8$ (C), 135.6 (CH), 135.5 (CH), 133.8 (C), 129.6 (CH), 129.5 (CH), 127.6 (CH), 127.1 (CH), 126.6 (CH), 126.3 (CH), $126.0(\mathrm{CH})$, $114.4\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right)$, $26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $-5.3\left(\mathrm{SiCH}_{3}\right)$.

3-(2-H ydroxymethylphenyl)-5-(tert-butyIdiphenyIsilyloxy)pent-1-ene 40
 A suspension of the alcohol 39 ($841 \mathrm{mg}, 1.55 \mathrm{mmol}$) in absolute

 ethanol $\left(8 \mathrm{~cm}^{3}\right)$ was stirred with pyridinium toluene p-sulfonate ($117 \mathrm{mg}, 0.46 \mathrm{mmol}$) for 48 h at room temperature ${ }^{22}$ The solvent was evaporated under reduced pressure, water was added $\left(10 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with ethyl acetate $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with brine and then with water, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 9)$, to yield the alcohol $40(530 \mathrm{mg}, 80 \%)$ as an oil (Found: MH^{+}, 431.2402. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{2}$ Si requires MH , 431.2406); $v_{\max } / \mathrm{cm}^{-1} 3417(0-\mathrm{H})$ and $1635(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$, CDCl_{3}) $7.69-7.57(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44-7.19(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$, 6.03-5.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.05-4.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), 4.86-4.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{O}$), $4.02(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{ArCH}), 3.73-$ $3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7$ and $6.1, \mathrm{OH})$, 1.98-1.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$) and $1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right.$; $\delta_{\mathrm{c}}(100$ $\mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) 142.1 (CH), 141.8 (C), 138.7 (C), 135.6 (CH), 135.5 (CH), 133.5 (C), 133.4 (C), 129.7 (CH), 129.6 (CH), 129.2 (CH), 128.3 (CH), 127.6 ($2 \times \mathrm{CH}$), 127.2 (CH), 126.4 $(\mathrm{CH}), 114.4\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{CH}), 38.0$ $\left(\mathrm{CH}_{2}\right), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $19.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{ve}) 431$ $\left(\mathrm{MH}^{+}\right)$and $413\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$.
C rystal structure determination for 1

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{M}=217.26$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $\mathrm{a}=9.173(2), \mathrm{b}=15.831(3), \mathrm{c}=7.883(2) \AA, \beta=105.36(3)^{\circ}$, $\mathrm{V}=1103.9(4) \AA^{3}, \mathrm{~T}=293(2) \mathrm{K}, \mathrm{D}_{\mathrm{c}}=1.307 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Z}=4$, $\mathrm{F}(000)=464$, molybdenum $\mathrm{K} a$ radiation, $\lambda=071073 \AA$, $\mu(\mathrm{Mo} 0-\mathrm{K} \alpha)=0.088 \mathrm{~mm}^{-1}$. Crystal dimensions $0.30 \times 0.32 \times$ 0.33 mm .

2349 Refelections were recorded on a Rigaku AFC7R diffractometer in the range $2.57<\theta<27.50^{\circ}$, and averaged to give

2189 reflections ($\mathrm{R}_{\text {int }}=0.0351$). The structure was solved by direct methods (SHELXS-86:TREF) and refined by fullmatrix least-squares based on F^{2} (SH ELXL-93). H -atoms were placed in idealised positions and allowed to ride on the relevant heavy atom with independent isotropic vibrational parameters. The structure refinement converged to $\mathrm{R}_{1}=0.0513$ and $w R_{2}=0.1146$ for reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.0982$ and $w R_{2}=0.1403$ for all data.

Acknowledgements

We are grateful to the European Network on Antibody Catalysis for a Postdoctoral Fellowship for C. G. B., to Dr P. R. Raithby for the crystal structure determination and to the EPSRC M ass spectrometry service at Swansea for mass spectra.

R eferences

1 D. Cane, Chem. Rev., 1990, 90, 1089
2 (a) P. G. Schultz, A ngew. Chem., Int. Ed. Engl., 1989, 28, 1283; (b) R. A. Lerner, S. J. Benkovic and P. G. Schultz, Science, 1991, 252, 659; (c) S. J. Benkovic, A nnu. Rev. Biochem., 1992, 61, 29
3 (a) T. Li, K. D. Janda, J. A . A shley and R. A . Lerner, Science, 1994, 264, 1289; (b) T. Li, K. D. Janda, S. Hilton and R. A. Lerner, J. A m. Chem. Soc., 1995, 117, 2367.
4 I. M. Bell, C. A bell and F. J. Leeper, J. Chem. Soc., Perkin Trans. 1, 1994, 1997.
5 C. J. Cooksey and M. D. Johnson, J. Chem. Soc. B, 1968, 10, 1191.
6 T. Fujii, S. Yoshifuji, M. Michishita, M. Mitsukuchi and K . Yoshida, C hem. P harm. Bull., 1973, 21, 2695.
7 (a) T. Hirao, T. M asunaga, Y. Ohshiro and T. A gawa, Synthesis, 1981, 56; (b) T. Hirao, T. M asunaga, N. Yamada, Y. Ohshiro and T. A gawa, Bull. C hem. Soc. J pn., 1982, 55, 909

8 G. A. Olah, S. C. Narang, B. G. Balaram Gupta and R. M alhotra, J. O rg. C hem., 1979, 44, 1247.

9 (a) M. M ikolajczyk and P. K ielbasinski, Tetrahedron, 1981, 37, 233; (b) B. N ieses and W. Steglich, A ngew. Chem., Int. Ed. Engl., 1978, 17, 522; (c) Y. S. K lausner and M . Bodansky, Synthesis, 1972, 453.
10 G. Parrinello and J. K. Stille, J. A m. C hem. Soc., 1987, 109, 7122.
11 S. H. Pine, R. J. Pettit, G. D. Geib, S. G. Cruz, C. H. Gallego, T. Tijerina and R. D. Pine, J. O rg. Chem., 1985, 50, 1212.

12 L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, Wiley, N ew York, 1967, vol. 1, p. 1179.
13 C. Lawrence, I. M. Bell, C. A bell and F. J. Leeper, Isr. J. Chem., 1996, 36, 161.
14 (a) J. C. Hubert, W. Steege, W. N. Speckamp and H. O. Huisman, Synth. C ommun., 1971, 1, 103; (b) J. C. H ubert, W. N. Speckamp and H. O. H uisman, Tetrahedron Lett., 1972, 13, 4493; (c) J. C. Hubert, J. B. P. A. Wijnberg and W. N. Speckamp, Tetrahedron, 1975, 31, 1437; (d) A. I. M eyers, B. A. Lefker, T. J. Sowin and L. J. Westrum, J. O rg. C hem., 1989, 54, 4243.

15 (a) S. Searles, R. G. N ickerson and W. K. Witsiepe, J. Org. Chem., 1959, 24, 1839; (b) P. A . M arshall and R . H. Prager, Aust. J. Chem., 1977, 30, 141; (c) R. F. N ystrom and W. G. Brown, J. Am. Chem. Soc., 1947, 69, 1197.
16 S. Takano, M. Akiyama, S. Sato and K. Ogasawara, Chem. Lett., 1983, 1593.
17 (a) R. M. Hann, N. K. Richtmyer, H. W. Diehl and C. S. Hudson, J. Am. Chem. Soc., 1950, 72, 561; (b) H. G. F letcher, M ethods C arbohydr. Chem., 1963, 2, 307.
18 O. M itsunobu and M. Yamada, Bull. Chem. Soc. J pn., 1967, 40, 2380
19 Atomic coordinates, thermal parameters and bond lengths and angles have been deposited in the C ambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/89.
20 M . H offmann, Synthesis, 1986, 557.
21 E. Vedejs, D. A. Engler and J. E. Telschow, J. Org. C hem., 1978, 43, 188.

22 C. Prakash, S. Saleh and I. A. Blair, Tetrahedron Lett., 1989, 30, 19.
Paper 6/06968A
Received 11th O ctober 1996
A ccepted 21st N ovember 1996

